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Abstract. The low-temperature behaviour of the four-state chiral clock model is re-examined
using a systematic low-temperature series expansion of the free energy. Previously obtained
results for the low-temperature phases are corrected and the low-temperature phase diagram is
derived. In addition, the phase transition from the modulated region to the high-temperature
paraphase is shown to belong to the universality class of the three-dimengibrabodel.

1. Introduction

Uniaxially modulated structures are observed in very different classes of magnetic and
ferroelectric substances. In many cases they exhibit rather complex phase diagrams with
large varieties of phases. Phase transitions from a high-temperature paramagnetic or
paraelectric phase (paraphase) to commensurately and incommensurately modulated phases
occur, as external control parameters such as temperature and elastic stresses are varied.
Microscopic models are successfully used for the description of these modulated systems
[1]. An interesting example is thg-state chiral clock model [2], whose Hamiltonian is

H=-Jo) > cos[%(m,a — n_,-,a)] -y N COS|:277T(n,~_a —Nigi1+ A)} NG
o« (if) i o
« labels the layers perpendicular to the direction of the modulation (chiral direction) and
i, j the crystal units in these layersij) runs over neighbouring pairs in the layers. The
integer variables:; , describe the state of the unit «). They assume one of the values
from O to p — 1. Below they are called spins. The two terms in equation (1) describe
couplings (o > 0, J > 0) between nearest neighbours in the same and adjacent layers,
respectively.

In the ground state every layer is ferromagnetically ordered. Depending on the value
of A, various ordering patterns of the different layers are realized. Fer & < %
nearest neighbours in the chiral direction couple ferromagnetically (ferromagnetic bond),
thus leading to a ferromagnetic ground state where all spins are equal% kFon <1
the spin increases by one for successive layers (chiral bond), thus yielding the right-handed

chiral pattern
...012...(p —DO1...
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A = % is a multiphase point at which an infinity of different phases are degenerate since
ferromagnetic and chiral bonds have the same energy.

Whereas the three-state modgl£ 3) [3, 4] has been very thoroughly investigated, few
results are known for the general cgse 4. There are derivations of the low-temperature
phase diagram of the genegalstate model by an expansion of the free energy in the vicinity
of the multiphase point [2] as well as by a low-temperature mean-field theory [5], in which
it was claimed that, for the four-state moded & 4), only the phase$l2), (12€12+1),
(2€3), (2k32+13), (4), and(co) (k =0, 1, 2, ...) are stable at low-temperature@.; . . . u,)
is a shorthand notation for the phase with a period consistimgoainds withuq, uo, . .., u,
layers with spinsz, n + 1,...,n + r (all modulo p) respectively. The phasél?2), for
example, is given by the layer sequence

...011233011..

The ferromagnetic and chiral ground states are denote@djyand (1) respectively.

McCullough [6] investigated the phase diagram fore= 3, 4, and 5 using the mean-
field transfer-matrix (MFTM) method. From the numerical extrapolation of the data it was
concluded that the low-temperature phase diagrame fer 3 and p = 4 were consistent
with the results of the low-temperature series expansion [2, 7]. It is interesting, that, for
p = 5, new phases not predicted by the low-temperature series expansion [2] were found
to be stable at low temperatures.

Scholten and King [8] presented Monte Carlo simulations of the four- and six-state
models. They investigated especially the transition from the modulated phases to the
ferromagnetic phase (i.eA < %). As it was not possible to resolve particular phases,
they determined the ‘interface spacing’ as the average number of layers in a band for a
given phase. They claimed that, far = 0.45, the results were not inconsistent with the
predictions in [2]. In the casp = 4 and A = 0.2 new phases with an interface spacing
larger than the interface spacings of the phases predicted in [2] were observed close to the
transition to the ferromagnetic phase.

Recently the four-state chiral clock model was shown [9] to be a special case of
the double Ising spin (DIS) model [10-12], which was introduced to describe uniaxially
modulated ferroelectrics.

In the following new results for the four-state chiral clock model gC&re presented.

In sections 2 and 3 we will re-examine the low-temperature phase diagram and discuss
discrepancies with previous results. In section 4 it is shown that the transition from the
modulated phases to the paramagnetic phase belongs to the universality class of the three-
dimensionalXY-model, and in section 5 short conclusions are given.

2. The low-temperature series expansion

The present series expansion technique for the i@@del is similar to the method developed
by Fisher and Selke [13] for the axial next-nearest-neighbour Ising (ANNNI) model. At
low temperatures the reduced free energy per spig ﬁﬂ (N is the total number of
spins) may be expanded in the form [13]

EQ 1 (n)
:———E AZW. 2
! ksT N & N (2)

AZ"" is the total contribution to the partition function from configurations in whickpins
have flipped (in comparison with the ground stat&), the ground-state energy per spin,
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can be expressed [2, 7] in terms of the structural variablesi[13]L;/L (Ly: number of
k-layer bandsiL: total number of layers):

Eo({lk}) = —3q.J0— J1— J18 Zlk
i>1

with J; = J cog%4) and$ = tan(5A) — 1. The number of nearest neighbours in the layers
is ¢ ; it is 4 for the primitive cubic lattice.
The contributionsAZx” are expressed in terms of the elementary Boltzmann factors

w = exp(—Ko) X = exp(—ZK cos(%A))
and
y=x"= exp(—ZK sin(%A))

with Ko = Jo/(kgT) and K = J/(kgT). The reduced free energy per spin can be
expanded in a convergent power series wf provided thatx,y > w-. At low
temperatures (i.eT < J, which is assumed throughout this paper) this condition holds
for g1 Jo > 2J max[cogZ A), sin(5A)]. This is clearly satisfied iy, Jo > 2J. The weight

w results from changing an in-layer bond between spins with equal values to a bond between
spins with values differing by 1. The lowest orders involvedafe (overturning one spin),
w?+=2 (overturning two neighbouring spins in one layer) an®{* (overturning two spins

not being in-layer nearest neighbours).

There are three possible environments of a given spin (the numbers in parentheses are
the values of the spins in three consecutive layers where the considered spin belongs to the
middle layer): (a) spins with two ferromagnetic bonds in the chiral direction (é).@), @b)
spins with one ferromagnetic and one chiral bond (eig.)oand (c) spins with two chiral
bonds (e.g. D2).

Let us discuss, as an example, the contributionzﬁ) (first-order term in equation (2))
for case (a). By overturning one spin, three different final states can be obtainieeir{g
the initial state): m + 1) mod 4, m + 2) mod 4, and(m + 3) mod 4. This leads to the
Boltzmann factor

Y expl-(10 — £/} = Y (exp| cos(§.) eos( ) - 1]}
< expla.kocos(3n) ~1]})

= xw? + x2w 4 xwi. 3)

It is obvious from equation (3) that the process—> (m + 2) mod 4 does not contribute
to the lowest-order term in the expansion, as it has the same in-layer Boltzmanmuf&ttor
as the higher-order process by which the values of two uncoupled spins change by 1. In
fact, this process of the order®: does not even contribute to the lowest-order correction
term, which is of the ordew?+~2 (flipping of two neighbouring spins in one layer [13]).

In [2] the following contribution toAZI(VD for case (a) is given:

Z expl—(E;(n) — E;)/(ksT)] = Z exp[zK cos( : A) [cos(%n) — 1]] Wt

n=1
= (x + x> + X)o? (4)
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<2> <1>

1st order

Figure 1. Schematic phase diagram showing, for given small

value of 7, the phase sequence on a line along which

varies. Lower horizontal line: sequence in zeroth order of

the expansion (exact f&f = 0); upper line: first-order results.
Oth order 8 = 0 is the multiphase point. Broken lines indicate boundary
=0 lines at which an infinity of phases are degenerate.

<oo> <1>

with
w= ;exp{KO [cos(%:) —1]} =w+w?+w. (5)

A comparison of equations (4) and (5) with equation (3) reveals that the treatment of the in-
layer bonds is erroneous in [2]. The free energy is written in [2] as an expansion in terms
of the (erroneous) Boltzmann factar. As a consequence, contributions from different
orders of the expansion are treated in [2] as if they were of the same order. Thus, in our
example, the term?, resulting from the process — (m + 2) mod 4 and contributing to
a higher-order correction in the polynominal expansiomwiiisee equation (3)), contributes
to the lowest order in [2] (see equation (4)). This error is repeated for all considered spin
configurations and for all considergdstate modelsg > 4), thus leading to a wrong low-
temperature phase diagram not only for the,@del, but also for the generalizgdstate
chiral clock model withp > 4. One should emphasize that the treatment of the in-layer
bonds is correct in the analyses of the {0@odel [7].

With the correct contributions, the reduced free energy (2) in first order is given by

f=-3q1Ko— K1 — 3K18 — 1+ xp)w’ + a1(8)a + Y ax($)lk + Ow®*~?) (6)
k>3

with
a1(8) = —3K18 — 2y — xy — Du™
and
ax(®) = (k — 2)[5K18 — (2x —xy — Duw™].

The set of structural variablds minimizing f for given values o6 and 7 determine the

stable phases occurring in first order (see figure 1):(thé-, the (1)-, and the(2)-phase.
Phasegoo) and (2) are, in this order of the expansion, separated by a boundary, at which
all phases that are degenerate at the multiphase point and that do not contain 1-layer bands
have the same free energy. Likewise, phases containing only 1- and 2-layer bands are still
degenerate on the boundary between (the and (2)-phase.

One could now proceed in considering processes involving two spins, then three spins
and so on. This is very cumbersome and only feasible for processes involving few spins. In
the next section the phases stable in general order in the series expansion will be determined
using a transfer-matrix method.
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<v> <V V> <v,> <v> <v,>
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Figure 2. Schematic phase diagram in the vicinity of the boundary between two stable phases
(v1) and(v2). The horizontal lines correspond, as in figure 1, to a given valué afd present
results ofnth andmth order. @) The phase(vivy) is stable at higher order leading to new
boundary lines. if) The phasdvivz) is not stabilized leading to a true phase boundary between
the two phasegvi) and (v2). The broken line indicates a boundary at which an infinity of
phases are degenerate, the full line indicates a true phase boundary.

3. Transfer-matrix method

3.1. Introductory remarks
One should first note that the Hamiltonian (1) is left invariant by the transformation

A— AN =1-A
Nig —> N, = (=N, +a) mod 4

@)

Therefore, the phase diagram of the £@odel is invariant under a reflection in the line
A= % In the following we will discuss the low-temperature phase diagram for the case
A > % i.e. we will analyse in detail the stability of the boundary line between(iheand
(2)-phase, the phase diagram far< % being inferred by the transformation (7).

In the ground state and low-temperature expansion every ghasensists of a periodic
arrangement of a sequence mofv) layers calledv-sequencesn(v) is the period of the
phase). Suppose now that in a certain order of the series expansion two stable phases,
and(vy), are separated by a boundary at which the phases produocgd dydv,-sequences
are degenerate (see figure 2). In first order the boundary under consideration separates the
phaseg1) and(2). At higher order a new phase) = (v1v,) consisting of a structure with
alternatingv;- and v,-sequences might be stable in the vicinity of the boundary. If

n(vy) n(v)

W= o Gy

(v1) n(vy) + n(v2) f<V2> (8)

is negative, the new phase has a lower free energy than the phasesd (vy) [13, 14]

and it will be stabilized in the vicinity of th&v;) : (v2) boundary (see figure &)). The
stability of the boundaries between the phasg$ and (v;v,) and the phase&iivy) and

(v2) must then be examined at higher orders. If, on the other hands positive, the
phase(v;v,) (and therefore every phase consistingvgf and v,-sequences) has a higher
free energy tharjv1) or (v2). The boundary is a true phase boundary which remains stable
in all orders of the low-temperature series expansion (see figte. 2(
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The reader is referred to [13, 7] for details concerning the construction of the series
expansion to general order.

3.2. Formulation in terms of transfer matrices and vectors

The sign ofa,, and therefore the stability of the phage, is determined by the leading
term in its expansion in terms ab. This term is obtained by considering all flipping
processes involving a spin chainofv) — 1 spins inn(v) — 1 different layers [7]. Besides

the linear configuration with alk(v) — 1 spins connected, the various decompositions of
this configuration into 23, ..., n(v) — 1 different parts must be taken into account. The
contributions from these processes can be written as a product of transfer matrices and
vectors. The matrices describe a bond between two flipping spins, the vectors an initial or
a final bond preceding the first or following the last flipped spin respectively. Every spin
can flip to three different values and hence 3 matrices occur. As we are only interested

in the sign of thea, we can restrict ourselves to the two processes contributing in lowest
order, thus excluding the process — (m + 2) mod 4 only relevant for the correction
term. Of course, if one considers all possible processes (ke33natrices), the leading
term is identical to the term obtained by the«2 matrices. This has already been noticed

in the low-temperature analyses of a six-state clock model with competing axial nearest-
and next-nearest neighbour couplings [14], where the corresponding nhatrices have
been considered instead of the general 5 matrices.

As two axial next-nearest-neighbours are either coupled by a ferromagnetic or by a
chiral bond, only two different matrices are to be constructed. For a ferromagnetic or a
chiral bond between two spins in the layersand « + 1 one obtains, respectively, the
transfer matrices

- 1—x x(1—y) .
Fa,a+1 = (x(l _ y—l) 1—x ) w? (9)
and
_( 1-y yA-xH)\ .
Ca,a+1 - (y(l _ x) 1— y > wt. (10)

The matrix elements are the Boltzmann factors for a simultaneous change of the values of
the two spins. The first (second) row corresponds to a changg = +1(—1) and the first
(second) column t@\n; ,4+1 = +1(—1). Every element of the matricésandC is a sum of
two terms, the first term resulting from changing the values of two axially coupled spins.
As already mentioned, disconnected pairs of spins (i.e. two spins that are not neighbours
to each other but neighbours to an unchanged spin) also contribute to the partition sum.
Since every disconnected pair must be associated with a minus sign [13], the corresponding
Boltzmann factors enter the different matrices with a negative sign.

The factorw?+ resulting from changing the in-layer bonds in layes 1 is common
to all elements of the matricds and C. This is a direct consequence of the fact that only
flipping processes: —> (m + 1) mod 4 are to be considered for obtaining the leading
order in the expansion af,. For the full 3x 3 matrices this is not the case as the flipping
processm — (m + 2) mod 4 has the in-layer Boltzmann facterf?-. In [2] the phase
diagram has been determined to general order usirg33transfer matrices. Due to the
erroneous treatment of the in-layer interactions (see section 2) the ‘commondi®rmas
been factorized, thus leading, again, to the treatment of terms belonging to different orders
as being of the same order.
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Table 1. The leading orders, in the expansion of the quantities (equation (8)) determining
the stability of different families of phases consisting of 1- and 2-layer-bands.

v bv

1*2 —(al - a})Ck(bf —be)
12112 —(al —a/)CKFCH(by — b.)
12 —(al —a[)(CFH*'C(by — be)

1241241 —(al — af)(CF*C(CF)*C(bs — be)

A spin at the end of the spin chain is a neighbour of an unchanged spin. To determine the
contributions of these spins, four different cases are to be distinguished: (a) the considered
spin is the first spin of the chain and its bond to the left (i.e. to an unchanged spin) is a
ferromagnetic or a chiral bond (subscripfsand c respectively) or (b) it is the last spin
of the chain and its bond to the right is a ferromagnetic or a chiral bond. The Boltzmann
factors for the flipping of these single spins are written as vectors:

1

ay = (yy; ) xZw?t (11)
1

a. = (X“; ) yiuh (12)
1

by = <yy_2§ ) xz (13)
_1

b. = (i;)ﬁ. (14)

Vectors (13) and (14) do not include the Boltzmann factor resulting from the change of
the in-layer bonds. This factor has already been included in the matrix describing the
overturning of the two last spins in the spin chain.

3.3. Derivation of the low-temperature phase diagram

With matrices (9) and (10) and vectors (11)—(14) it is now possible to compute the leading-
order termb, of the quantitiess, (and, thus, to determine the sign @f) for all phases
degenerate at the multiphase point and containing only 1- and 2-layer bands. All considered
phases can be viewed as periodic arrangements of spin sequences with a 1-layer band as
the first and a 2-layer band as the last band in the sequence [7]. The segualnzéned

by stripping the original sequenceby its last and first band is called core. All sequences
based on the same cofeenter in the computation of the,: SequencesiR and 21
contribute negatively, sequencesglland 22 contribute positively [13]. The expressions

b, for different families of phases are summarized in table 1.

3.3.1. Stability of some series of phaseEor the series of phas¢$2) the expression (see
table 1)

bix = —(a! —al)(CFHC(b; — b.) (15)

gives the leading contribution te;x. The four different sequences based on the core
v = 2¢-1 yield the four different contributions t, .
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The eigenvalues exp-I'.) of the matrixCF are real and positive. Expression (15) can
be written in the form

k k
bix = Ay exp<—§F+> + A_ exp(—?‘)

with 'y < T'_. A close examination reveals that for finite temperatutes< 0, A_ > 0

andA, + A_ < 0. Thus,b,x is negative for alk, i.e. all phases of the forniL2*) spring

from the multiphase point and have a finite stability range at temperatures above zero.
The leading-order contribution for the phag@$2) is

byo = —(a] —a})C*(bs — b,). (16)
The eigenvalues of the matri@ are complex conjugate. They are written in the form
£1+i& = exp(—To £iQ) (17)

with To = —3In(E2 + £2) > 0, @ = arctan) andé; = 1 — x*°, & = (1 — x)x 3+, We
then obtain the expression

byo = —(A1 +iA2)(E1 + &) 4 (A1 — 1A (&1 — &) = —| Al exp(—kTo) cOgkQ + ¢)

with |[Alexpip = A; + iA,. The temperature-dependent quantitias, ¢, I'p, and 2 do
not depend ort.

byo IS negative for small values df. If k exceeds the valukyax = é(% — ¢), then
bi» becomes positive and, thus, all phases wviith- knax are unstable at the considered
point of the phase diagram. Sinég.x — oo for T — 0, there is, for every, a
temperature below which the pha&i?2) is stable. Thus, all phasé&*2) spring from the
multiphase point, but the higher commensurate phases disappear at non-zero temperatures
T, which decrease with increasitg Such a cut-off of the high commensurate phases at
finite temperatures is also observed in the ANNNI model [15].

Following the general line we also examined the series of ph&k242+!) and
(1k225-12).  For the caseg(12*12*t1) we find that all these phases are stable at finite
temperatures in the vicinity of the multiphase point with no cut-off for the phases with
a large value of, i.e. the results for the seri¢s2*12*+1) resemble the results for the series
(12). Analysing the leading contribution for the phasd@$21—12) we find a behaviour
similar to the behaviour of the phasgié?2), i.e. all phases witlt < kmax (the value oftmay
being series dependent) are stable &pgi — oo as7 — 0.

It should be emphasized that the low-temperature expansion yields a convergent power
series only ifx > w?. For the CG model [16] an analysis in Bethe approximation
showed no cut-off of the low-commensurate phadég) with k < 10 for the casely = J,
in contrast to the corresponding low-temperature expansion [7]. In fact, for these low-
commensurate phases the cut-off temperature is of the ordér dResults of the series
expansion for such high temperatures are only reliabdg iy > J is assumed. Therefore,
the results of the expansion in [7] do not contain the cikse J considered in [16].

3.3.2. Phases containing general sequences of 1- and 2-layer bahdshe following we

will show that all phases consisting only of 1- and 2-layer bands and obeying the rules
of the structure combination spring from the multiphase point, the higher commensurate
phases of some series becoming unstable at higher temperatures. The leading contribution
to a, for all these phases is of the form (see table 1)

b, = —(a} — a;)DC(b; — b,) (18)
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whereD is a product of powers of matricés and (CF). The contributions of the first
and last band are given b/ — af) andC(b; — b.) respectively. A 1-layer band in the
core contributes a matri, whereas a 2-layer band yields the matrix prodi@€f). The
product over all bands in the core yields the mamiXsee equation (18)).

The diagonal elements of the matrix

L 20-pd-x  x@-y? —x1y<1—x>2> o,
CF= <y(1 2yt y? A4an@—pd-x) )V (19)

are positive whereas the non-diagonal elements are negative,siace*® with x < 1.
We now follow [14] and introduce the unitary matrix

(-1 0\ _
u_<0 1>_U :

All elements ofU(CF)U, and therefore ofJ(CF)*U, are positive. This is also the case for
the two vectorsa! — af)U andUC(b; — b.), thus (see equation (15) and table 1)

(al — a})(CF)**C(bs — b.) = (a] — a] )UU(CF)*"*UUC(b; — b.)

is positive, i.e.b1x < 0, in agreement with the aforementioned calculations.

Phases of the serigd212*t1) contain a single 1-layer-band in the core yielding the
matrix product(CF)C(CF) with positive diagonal and negative non-diagonal elements for
small x. Hence, the product (see table 1)

(al — af)(CF)*C(CF)*C(bs — b,)
= (a! — af)UU(CF)*"*UU(CF)C(CF)UU(CF)**UUC(b; — b,)

is positive, showing the stability of the phasg¢12+1). Following this line of thought
one easily shows that all phases appearing between the pasesl (12) (i.e. phases with
only isolated 1-layer-bands in the core) are stable in the vicinity of the multiphase point.
Indeed, as no new matrix products show up in the computation of the differeall these
expressions can be written, using the matlixas a product of vectors and matrices having
only positive elements.

For phases containing consecutive 1-layer-bands in the core the following additional
vectors and matrices may contribute to theas can be seen from table WCkK (by — b.),
(al — af)C*U, andU(CF)C*U with k > 2. Introducing the eigenvalues of the matfix
(see equation (17)), we obtain

Vi = exp(—kTo)[x2(1 — x) cosk2 + x~ 2 (1 — x) sinkQJwke:
Vo = exp(—kTo)[x 2 (1 — x1*%) cosk — x 18 (1 — x) sinkQw*4:
for the components of the vector= UC"(bf —b.). Wherea is always positivep, > 0
only if the inequality
x73(1— x1H)
x1+5(1 —X)
holds. This is the case for temperatures smaller than an upper limit which deperdds on
andk. In a similar way one shows that for temperatures smaller than godependent
temperature all the components of the vectgr—a})C*U and of the matribU(CF)C*U are
positive. The free energy differences for all phases containing consecutive 1-layer-bands

in the core are therefore negative below a certain temperature, i.e. these phases possess a
stability region below this temperature.

tankQ2 <
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3.3.3. Conclusion. The results obtained so far can be summarized as follows. All phases
consisting only of 1- and 2-layer-bands, that can be formed by means of the aforementioned
structure combination rules, spring from the multiphase point, where they are degenerate.
The higher commensurate phases of some series, i.e. those phases formed in higher orders
of the combination process, disappear again at temperatures individually depending on the
series under consideration.

From these results the complete low-temperature phase diagram of then@iel is
deduced by applying the transformation (7). At non-zero temperatures all phases appearing
between the phasg42) and (3) are stable since the transformation (7) transforms phase
(12) into (3) and leaves the phag@) invariant. Some of the long commensurate phases
appearing between the phagés and(12) for A > % and between the phasés) and (3)
for A < % are unstable at a given temperature. Upon reducing the temperature, increasingly
more of these phases become stable, and in theTimit> 0 all phases obeying the rules of
the structure combination are stable. Therefore, the @Gdel exhibits a complete devil's
staircase in the low-temperature limit.

3.4. Comparison with other work

The low-temperature behaviour of the gengradtate chiral clock model was analysed in [2]
using a series expansion technique similar to the one presented here. Due to the incorrect
expansion (see section 2) only some specific families of phases were shown to possess
a finite stability region at small temperatures. Particularly, it was claimed that the phases
(1¥2) with k > 2 are not stable at low temperatures, implying that, due to transformation (7),
for A < % a direct transition from the ferromagnetic phase to #ephase exists. In order

to corroborate these calculations a low-temperature mean-field analyses of jhadci€l

was presented in [5] were it was claimed that in the vicinity of the multiphase point the
mean-field approximation yields the same stable phases as [2]. In that work the model in
mean-field approximation was mapped onto an one-dimensional array of interacting domain
walls. This mapping was derived under the approximation that the mean-field average spin
({(cosZn; o )mF, (SiNZn; . )wF) In each layer (layer spin) does only deviate from he= 0

value in amplitude but not in phase. In a detailed analyses of the mean-field phase diagram
of the CG model, Siegert and Everts [17] showed that this approximation leads to a wrong
phase diagram at low temperatures, thus concluding that the layer spin must also be allowed
to deviate in phase from its ground-state value. This should not only be the case for the
three-state but also for the genepalstate model. The results of [5] for the mean-field
low-temperature behaviour of the C@odel must therefore be considered with care.

In the preceding sections we have shown that the results of the series expansion in [2]
are erroneous due to wrong Boltzmann factors for the in-layer bonds. In fact, the four-state
model exhibits in the low-temperature limit a complete devil's staircase. Furthermore, it
results from our calculations that no direct transition from the ferromagnetic t@thghase
exists as phases with longer periods are stable between these two phases.

In the Monte Carlo simulation of the GOmnodel [8] long-period spin patterns were
observed when going from the ferromagnetic phase to the modulated phases at rather
high temperatures. In view of this work one must interpret these patterns as reflecting
the existence of phases springing from the multiphase point and intercalating between the
ferromagnetic and thé4)-phases.
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4. The critical behaviour

The critical behaviour of the general-state chiral clock model at the transition to the
paraphase is an interesting topic since fo= 2 the chiral clock model reduces to the
anisotropic Ising model, fop = oo it corresponds to the classical three-dimensioxé-
model. Siegert and Everts [18] showed that the;@@bdel belongs to the universality
class of the three-dimensionly-model. On the basis of his contradictory MFTM results,
McCullough [6] speculated about a change in the universality class from three-dimensional
Ising behaviour to three-dimensionaly -behaviour forp close to 5. In the following we
will show that forp = 4 an effective Ginzburg-Landau—Wilson Hamiltonian can be derived
which can be transformed to the effective Hamiltonian of the three-dimenslonahodel.

For the case = 4 the Hamiltonian (1) can be rewritten in the form

H=-1Y"%"8aR(A)Siai1—Jo) Y SiaSia
i« o (ij)

where we introduced the spin vectsf, = (Cos5n;., SinZn;,) and the rotation matrix

COSZA  singA
—sin %A cos%A

R(A) = <

Rotating all spins in layew by the angleZaA, i.e. introducing new vectors;, =
R(xA)S, ., leads to the expression

Z = Zexp[ -z Z ZZ Kiq jﬂa]fﬁ} (20)

ij af k=

for the partition functionk labelling the two spin components. The elemekiis ;s of the
coupling matrix are zero unless the lattice sitesx) and (j, 8) are nearest neighbours.
Expression (20) may be transformed [19, 20] into

Z = C?(ﬂl;[/dh,f,y) exp[—-;;:;hfaL;ljﬂhjﬁJrZZZhw ,a]

Here C is a numerical constanty is the total number of lattice sites ahds the N x N
identity matrix. The matrixL is given byL = ul — K where the positive humbet is
chosen large enough to ensure that all the eigenvaluesané positive.

The sum over all states can be easily computed:

Z exp< Z Z Z ht o a) = 2V [ [lcoshh} ,ca — h? su) + COSHAT .50 + h7 )]

(21)
with ¢, = cogZaA) ands, = sin(FaA). Using the expansion
22192 _ 1)B
| h = — L D At
ncos Xn:( ) Y

(B,: Bernoulli number) the expression on the right-hand side of (21) can be written as the
exponential of a sum of powers &f , andh?:

k 2n—k
Clexp[zzz Zc(n k1, Z)ZZ L g2n=l- ”(hi{a)k(hﬁa)z”—k} (22)

n 0 /=0 I'=
wherec(n, k, [,1’) is a number depending o k, [ and/’.
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Introducing new variableg , = L,‘al s g taking the continuum limit and turning to

the wavenumber representatidn leads to the partition function

7 x (H/drq> exp[—H]
q
with the effective Hamiltonian
-1 dq , T,
H= / r+4qi+ g [T(@7(-q)]
B 0

z (2m)3
d3 d3 /d3 "
—u / Lgq[T(q)ﬂ'(q’)][T(l;(”)T(—q -q —q")] (23)
Bz (271)
with
=it and o= [ S exmiqrg.

The integration is over the first Brillouin zone with = (q., qy), its componentsy;
and g, being perpendicular and parallel to the direction of the modulation respectively.
F=- #(1—2Yo — 1) with Y = 2= L and Yo = k"’T varies linearly with temperature.

In denvmg equation (23) we neglected fourth and higher harmonics, i.e. fast oscillating
terms containing exim Za A) with n > 4. Furthermore we did not include terms of higher
than fourth order inc. If we rescaley, in the effective Hamiltonian [21] we end with the
effective Ginzburg—Landau—Wilson Hamiltonian of the three-dimensiariamodel.

5. Conclusions

A low-temperature series expansion technique is suitable to obtain exact results on the low-
temperature behaviour of the @@odel. All phases degenerate at the multiphase point
(T=0A= %) and obeying the structure combination rules spring from the multiphase
point. Some of these phases disappear at higher temperatures. In the low-temperature limit
the CG model exhibits a complete devil's staircase. Differences in the low-temperature
phase diagrams derived in the present and in a previous publication can be traced back to
an inconsistency in the series expansion of the latter. Long-period spin patterns derived in
this paper as stable phases between the ferromagnetic and)thkase and not occurring

in the analyses presented in [2], were recently seen in Monte Carlo simulations just above
the boundary of the ferromagnetic phase.

Furthermore, the critical behaviour at the boundary between the paraphase and the
modulated structures follows from the derivation of an effective Ginzburg—Landau—Wilson
Hamiltonian. It is shown that the latter can be transformed into the effective Hamiltonian
of the three-dimensionaf Y-model. The four-state model thus belongs to the universality
class of theXY-model.
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