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Abstract. The low-temperature behaviour of the four-state chiral clock model is re-examined
using a systematic low-temperature series expansion of the free energy. Previously obtained
results for the low-temperature phases are corrected and the low-temperature phase diagram is
derived. In addition, the phase transition from the modulated region to the high-temperature
paraphase is shown to belong to the universality class of the three-dimensionalXY -model.

1. Introduction

Uniaxially modulated structures are observed in very different classes of magnetic and
ferroelectric substances. In many cases they exhibit rather complex phase diagrams with
large varieties of phases. Phase transitions from a high-temperature paramagnetic or
paraelectric phase (paraphase) to commensurately and incommensurately modulated phases
occur, as external control parameters such as temperature and elastic stresses are varied.
Microscopic models are successfully used for the description of these modulated systems
[1]. An interesting example is thep-state chiral clock model [2], whose Hamiltonian is

H = −J0

∑
α

∑
〈ij〉

cos

[
2π

p
(ni,α − nj,α)

]
− J

∑
i

∑
α

cos

[
2π

p
(ni,α − ni,α+1+1)

]
. (1)

α labels the layers perpendicular to the direction of the modulation (chiral direction) and
i, j the crystal units in these layers.〈ij〉 runs over neighbouring pairs in the layers. The
integer variablesni,α describe the state of the unit(i, α). They assume one of the values
from 0 to p − 1. Below they are called spins. The two terms in equation (1) describe
couplings (J0 > 0, J > 0) between nearest neighbours in the same and adjacent layers,
respectively.

In the ground state every layer is ferromagnetically ordered. Depending on the value
of 1, various ordering patterns of the different layers are realized. For 06 1 < 1

2
nearest neighbours in the chiral direction couple ferromagnetically (ferromagnetic bond),
thus leading to a ferromagnetic ground state where all spins are equal. For1

2 < 1 6 1
the spin increases by one for successive layers (chiral bond), thus yielding the right-handed
chiral pattern

. . .012. . . (p − 1)01. . .
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1 = 1
2 is a multiphase point at which an infinity of different phases are degenerate since

ferromagnetic and chiral bonds have the same energy.
Whereas the three-state model (p = 3) [3, 4] has been very thoroughly investigated, few

results are known for the general casep > 4. There are derivations of the low-temperature
phase diagram of the generalp-state model by an expansion of the free energy in the vicinity
of the multiphase point [2] as well as by a low-temperature mean-field theory [5], in which
it was claimed that, for the four-state model (p = 4), only the phases〈12k〉, 〈12k12k+1〉,
〈2k3〉, 〈2k32k+13〉, 〈4〉, and〈∞〉 (k = 0, 1, 2, . . .) are stable at low-temperatures.〈u1 . . . ur〉
is a shorthand notation for the phase with a period consisting ofr bands withu1, u2, . . . , ur
layers with spinsn, n + 1, . . . , n + r (all modulo p) respectively. The phase〈12〉, for
example, is given by the layer sequence

. . .011233011. . .

The ferromagnetic and chiral ground states are denoted by〈∞〉 and〈1〉 respectively.
McCullough [6] investigated the phase diagram forp = 3, 4, and 5 using the mean-

field transfer-matrix (MFTM) method. From the numerical extrapolation of the data it was
concluded that the low-temperature phase diagrams forp = 3 andp = 4 were consistent
with the results of the low-temperature series expansion [2, 7]. It is interesting, that, for
p = 5, new phases not predicted by the low-temperature series expansion [2] were found
to be stable at low temperatures.

Scholten and King [8] presented Monte Carlo simulations of the four- and six-state
models. They investigated especially the transition from the modulated phases to the
ferromagnetic phase (i.e.1 < 1

2). As it was not possible to resolve particular phases,
they determined the ‘interface spacing’ as the average number of layers in a band for a
given phase. They claimed that, for1 = 0.45, the results were not inconsistent with the
predictions in [2]. In the casep = 4 and1 = 0.2 new phases with an interface spacing
larger than the interface spacings of the phases predicted in [2] were observed close to the
transition to the ferromagnetic phase.

Recently the four-state chiral clock model was shown [9] to be a special case of
the double Ising spin (DIS) model [10–12], which was introduced to describe uniaxially
modulated ferroelectrics.

In the following new results for the four-state chiral clock model (CC4) are presented.
In sections 2 and 3 we will re-examine the low-temperature phase diagram and discuss
discrepancies with previous results. In section 4 it is shown that the transition from the
modulated phases to the paramagnetic phase belongs to the universality class of the three-
dimensionalXY -model, and in section 5 short conclusions are given.

2. The low-temperature series expansion

The present series expansion technique for the CC4 model is similar to the method developed
by Fisher and Selke [13] for the axial next-nearest-neighbour Ising (ANNNI) model. At
low temperatures the reduced free energy per spinf = F

NkBT
(N is the total number of

spins) may be expanded in the form [13]

f = E0

kBT
− 1

N

∑
n>1

1Z
(n)
N . (2)

1Z
(n)
N is the total contribution to the partition function from configurations in whichn spins

have flipped (in comparison with the ground state).E0, the ground-state energy per spin,
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can be expressed [2, 7] in terms of the structural variables [13]lk = Lk/L (Lk: number of
k-layer bands;L: total number of layers):

E0({lk}) = − 1
2q⊥J0− J1− J1δ

∑
k>1

lk

with J1 = J cos( π2 δ) andδ = tan( π21)−1. The number of nearest neighbours in the layers
is q⊥; it is 4 for the primitive cubic lattice.

The contributions1Z(n)N are expressed in terms of the elementary Boltzmann factors

w = exp(−K0) x = exp
(
−2K cos

(π
2
1
))

and

y = x1+δ = exp
(
−2K sin

(π
2
1
))

with K0 = J0/(kBT ) and K = J/(kBT ). The reduced free energy per spin can be
expanded in a convergent power series ofw, provided thatx, y � wq⊥ . At low
temperatures (i.e.T � J , which is assumed throughout this paper) this condition holds
for q⊥J0 > 2J max[cos( π21), sin( π21)]. This is clearly satisfied ifq⊥J0 > 2J . The weight
w results from changing an in-layer bond between spins with equal values to a bond between
spins with values differing by 1. The lowest orders involved arewq⊥ (overturning one spin),
w2q⊥−2 (overturning two neighbouring spins in one layer) andw2q⊥ (overturning two spins
not being in-layer nearest neighbours).

There are three possible environments of a given spin (the numbers in parentheses are
the values of the spins in three consecutive layers where the considered spin belongs to the
middle layer): (a) spins with two ferromagnetic bonds in the chiral direction (e.g. 00̂0), (b)
spins with one ferromagnetic and one chiral bond (e.g. 01̂1), and (c) spins with two chiral
bonds (e.g. 0̂12).

Let us discuss, as an example, the contribution to1Z
(1)
N (first-order term in equation (2))

for case (a). By overturning one spin, three different final states can be obtained (m being
the initial state): (m + 1) mod 4, (m + 2) mod 4, and(m + 3) mod 4. This leads to the
Boltzmann factor

3∑
n=1

exp[−(Ef (n)− Ei)/(kBT )] =
3∑
n=1

(
exp

{
2K cos

(π
2
1
) [

cos
(π

2
n
)
− 1

]}
× exp

{
q⊥K0

[
cos

(π
2
n
)
− 1

]})
= xwq⊥ + x2w2q⊥ + xwq⊥ . (3)

It is obvious from equation (3) that the processm −→ (m+ 2) mod 4 does not contribute
to the lowest-order term in the expansion, as it has the same in-layer Boltzmann factorw2q⊥

as the higher-order process by which the values of two uncoupled spins change by 1. In
fact, this process of the orderw2q⊥ does not even contribute to the lowest-order correction
term, which is of the orderw2q⊥−2 (flipping of two neighbouring spins in one layer [13]).

In [2] the following contribution to1Z(1)N for case (a) is given:

3∑
n=1

exp[−(Ef (n)− Ei)/(kBT )] =
3∑
n=1

exp
{

2K cos
(π

2
1
) [

cos
(π

2
n
)
− 1

]}
ωq⊥

= (x + x2+ x)ωq⊥ (4)
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Figure 1. Schematic phase diagram showing, for given small
value of T , the phase sequence on a line along whichδ
varies. Lower horizontal line: sequence in zeroth order of
the expansion (exact forT = 0); upper line: first-order results.
δ = 0 is the multiphase point. Broken lines indicate boundary
lines at which an infinity of phases are degenerate.

with

ω =
3∑
n=1

exp
{
K0

[
cos

(π
2
n
)
− 1

]}
= w + w2+ w. (5)

A comparison of equations (4) and (5) with equation (3) reveals that the treatment of the in-
layer bonds is erroneous in [2]. The free energy is written in [2] as an expansion in terms
of the (erroneous) Boltzmann factorω. As a consequence, contributions from different
orders of the expansion are treated in [2] as if they were of the same order. Thus, in our
example, the termx2, resulting from the processm −→ (m+ 2) mod 4 and contributing to
a higher-order correction in the polynominal expansion inw (see equation (3)), contributes
to the lowest order in [2] (see equation (4)). This error is repeated for all considered spin
configurations and for all consideredp-state models (p > 4), thus leading to a wrong low-
temperature phase diagram not only for the CC4 model, but also for the generalizedp-state
chiral clock model withp > 4. One should emphasize that the treatment of the in-layer
bonds is correct in the analyses of the CC3 model [7].

With the correct contributions, the reduced free energy (2) in first order is given by

f = − 1
2q⊥K0−K1− 1

2K1δ − (1+ xy)wq⊥ + a1(δ)l1+
∑
k>3

ak(δ)lk +O(w2q⊥−2) (6)

with

a1(δ) = − 1
2K1δ − (2y − xy − 1)wq⊥

and

ak(δ) = (k − 2)[ 1
2K1δ − (2x − xy − 1)wq⊥ ].

The set of structural variableslk minimizing f for given values ofδ andT determine the
stable phases occurring in first order (see figure 1): the〈∞〉-, the 〈1〉-, and the〈2〉-phase.
Phases〈∞〉 and 〈2〉 are, in this order of the expansion, separated by a boundary, at which
all phases that are degenerate at the multiphase point and that do not contain 1-layer bands
have the same free energy. Likewise, phases containing only 1- and 2-layer bands are still
degenerate on the boundary between the〈1〉- and〈2〉-phase.

One could now proceed in considering processes involving two spins, then three spins
and so on. This is very cumbersome and only feasible for processes involving few spins. In
the next section the phases stable in general order in the series expansion will be determined
using a transfer-matrix method.
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Figure 2. Schematic phase diagram in the vicinity of the boundary between two stable phases
〈ν1〉 and〈ν2〉. The horizontal lines correspond, as in figure 1, to a given value ofT and present
results ofnth andmth order. (a) The phase〈ν1ν2〉 is stable at higher order leading to new
boundary lines. (b) The phase〈ν1ν2〉 is not stabilized leading to a true phase boundary between
the two phases〈ν1〉 and 〈ν2〉. The broken line indicates a boundary at which an infinity of
phases are degenerate, the full line indicates a true phase boundary.

3. Transfer-matrix method

3.1. Introductory remarks

One should first note that the Hamiltonian (1) is left invariant by the transformation

1 −→ 1′ = 1−1
ni,α −→ n′i,α = (−ni,α + α) mod 4.

(7)

Therefore, the phase diagram of the CC4 model is invariant under a reflection in the line
1 = 1

2. In the following we will discuss the low-temperature phase diagram for the case
1 > 1

2, i.e. we will analyse in detail the stability of the boundary line between the〈1〉- and
〈2〉-phase, the phase diagram for1 < 1

2 being inferred by the transformation (7).
In the ground state and low-temperature expansion every phase〈ν〉 consists of a periodic

arrangement of a sequence ofn(ν) layers calledν-sequences (n(ν) is the period of the
phase). Suppose now that in a certain order of the series expansion two stable phases,〈ν1〉
and〈ν2〉, are separated by a boundary at which the phases produced byν1- andν2-sequences
are degenerate (see figure 2). In first order the boundary under consideration separates the
phases〈1〉 and〈2〉. At higher order a new phase〈ν〉 = 〈ν1ν2〉 consisting of a structure with
alternatingν1- andν2-sequences might be stable in the vicinity of the boundary. If

aν = f〈ν〉 − n(ν1)

n(ν1)+ n(ν2)
f〈ν1〉 −

n(ν2)

n(ν1)+ n(ν2)
f〈ν2〉 (8)

is negative, the new phase has a lower free energy than the phases〈ν1〉 and 〈ν2〉 [13, 14]
and it will be stabilized in the vicinity of the〈ν1〉 : 〈ν2〉 boundary (see figure 2(a)). The
stability of the boundaries between the phases〈ν1〉 and 〈ν1ν2〉 and the phases〈ν1ν2〉 and
〈ν2〉 must then be examined at higher orders. If, on the other hand,aν is positive, the
phase〈ν1ν2〉 (and therefore every phase consisting ofν1- and ν2-sequences) has a higher
free energy than〈ν1〉 or 〈ν2〉. The boundary is a true phase boundary which remains stable
in all orders of the low-temperature series expansion (see figure 2(b)).
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The reader is referred to [13, 7] for details concerning the construction of the series
expansion to general order.

3.2. Formulation in terms of transfer matrices and vectors

The sign ofaν , and therefore the stability of the phase〈ν〉, is determined by the leading
term in its expansion in terms ofw. This term is obtained by considering all flipping
processes involving a spin chain ofn(ν)− 1 spins inn(ν)− 1 different layers [7]. Besides
the linear configuration with alln(ν) − 1 spins connected, the various decompositions of
this configuration into 2, 3, . . . , n(ν) − 1 different parts must be taken into account. The
contributions from these processes can be written as a product of transfer matrices and
vectors. The matrices describe a bond between two flipping spins, the vectors an initial or
a final bond preceding the first or following the last flipped spin respectively. Every spin
can flip to three different values and hence 3× 3 matrices occur. As we are only interested
in the sign of theaν we can restrict ourselves to the two processes contributing in lowest
order, thus excluding the processm −→ (m + 2) mod 4 only relevant for the correction
term. Of course, if one considers all possible processes (i.e. 3× 3 matrices), the leading
term is identical to the term obtained by the 2× 2 matrices. This has already been noticed
in the low-temperature analyses of a six-state clock model with competing axial nearest-
and next-nearest neighbour couplings [14], where the corresponding 2× 2 matrices have
been considered instead of the general 5× 5 matrices.

As two axial next-nearest-neighbours are either coupled by a ferromagnetic or by a
chiral bond, only two different matrices are to be constructed. For a ferromagnetic or a
chiral bond between two spins in the layersα and α + 1 one obtains, respectively, the
transfer matrices

Fα,α+1 =
(

1− x x(1− y)
x(1− y−1) 1− x

)
wq⊥ (9)

and

Cα,α+1 =
(

1− y y(1− x−1)

y(1− x) 1− y
)
wq⊥ . (10)

The matrix elements are the Boltzmann factors for a simultaneous change of the values of
the two spins. The first (second) row corresponds to a change1ni,α = +1(−1) and the first
(second) column to1ni,α+1 = +1(−1). Every element of the matricesF andC is a sum of
two terms, the first term resulting from changing the values of two axially coupled spins.
As already mentioned, disconnected pairs of spins (i.e. two spins that are not neighbours
to each other but neighbours to an unchanged spin) also contribute to the partition sum.
Since every disconnected pair must be associated with a minus sign [13], the corresponding
Boltzmann factors enter the different matrices with a negative sign.

The factorwq⊥ resulting from changing the in-layer bonds in layerα + 1 is common
to all elements of the matricesF andC. This is a direct consequence of the fact that only
flipping processesm −→ (m ± 1) mod 4 are to be considered for obtaining the leading
order in the expansion ofaν . For the full 3× 3 matrices this is not the case as the flipping
processm −→ (m + 2) mod 4 has the in-layer Boltzmann factorw2q⊥ . In [2] the phase
diagram has been determined to general order using 3× 3 transfer matrices. Due to the
erroneous treatment of the in-layer interactions (see section 2) the ‘common term’ωq⊥ has
been factorized, thus leading, again, to the treatment of terms belonging to different orders
as being of the same order.
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Table 1. The leading ordersbν in the expansion of the quantitiesaν (equation (8)) determining
the stability of different families of phases consisting of 1- and 2-layer-bands.

ν bν

1k2 −(aTc − aTf )Ck(bf − bc)
1k21k−12 −(aTc − aTf )CkFCk(bf − bc)
12k −(aTc − aTf )(CF)k−1C(bf − bc)
12k12k+1 −(aTc − aTf )(CF)kC(CF)kC(bf − bc)

A spin at the end of the spin chain is a neighbour of an unchanged spin. To determine the
contributions of these spins, four different cases are to be distinguished: (a) the considered
spin is the first spin of the chain and its bond to the left (i.e. to an unchanged spin) is a
ferromagnetic or a chiral bond (subscriptsf and c respectively) or (b) it is the last spin
of the chain and its bond to the right is a ferromagnetic or a chiral bond. The Boltzmann
factors for the flipping of these single spins are written as vectors:

af =
(
y−

1
2

y
1
2

)
x

1
2wq⊥ (11)

ac =
(
x

1
2

x−
1
2

)
y

1
2wq⊥ (12)

bf =
(
y

1
2

y−
1
2

)
x

1
2 (13)

bc =
(
x−

1
2

x
1
2

)
y

1
2 . (14)

Vectors (13) and (14) do not include the Boltzmann factor resulting from the change of
the in-layer bonds. This factor has already been included in the matrix describing the
overturning of the two last spins in the spin chain.

3.3. Derivation of the low-temperature phase diagram

With matrices (9) and (10) and vectors (11)–(14) it is now possible to compute the leading-
order termbν of the quantitiesaν (and, thus, to determine the sign ofaν) for all phases
degenerate at the multiphase point and containing only 1- and 2-layer bands. All considered
phases can be viewed as periodic arrangements of spin sequences with a 1-layer band as
the first and a 2-layer band as the last band in the sequence [7]. The sequenceν̃ obtained
by stripping the original sequenceν by its last and first band is called core. All sequences
based on the same corẽν enter in the computation of thebν : Sequences 1̃ν2 and 2̃ν1
contribute negatively, sequences 1ν̃1 and 2̃ν2 contribute positively [13]. The expressions
bν for different families of phases are summarized in table 1.

3.3.1. Stability of some series of phases.For the series of phases〈12k〉 the expression (see
table 1)

b12k = −(aTc − aTf )(CF)k−1C(bf − bc) (15)

gives the leading contribution toa12k . The four different sequences based on the core
ν̃ = 2k−1 yield the four different contributions tob12k .
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The eigenvalues exp(−0±) of the matrixCF are real and positive. Expression (15) can
be written in the form

b12k = A+ exp

(
−k

2
0+

)
+ A− exp

(
−k

2
0−

)
with 0+ < 0−. A close examination reveals that for finite temperaturesA+ < 0, A− > 0
andA+ + A− < 0. Thus,b12k is negative for allk, i.e. all phases of the form〈12k〉 spring
from the multiphase point and have a finite stability range at temperatures above zero.

The leading-order contribution for the phases〈1k2〉 is

b1k2 = −(aTc − aTf )Ck(bf − bc). (16)

The eigenvalues of the matrixC are complex conjugate. They are written in the form

ξ1± iξ2 = exp(−00± i�) (17)

with 00 = − 1
2 ln(ξ2

1 + ξ2
2 ) > 0, � = arctan( ξ2

ξ1
) andξ1 = 1− x1+δ, ξ2 = (1− x)x 1

2+δ. We
then obtain the expression

b1k2 = −(A1+ iA2)(ξ1+ iξ2)+ (A1− iA2)(ξ1− iξ2) = −|1| exp(−k00) cos(k�+ φ)
with |1| exp iφ = A1 + iA2. The temperature-dependent quantities|1|, φ, 00, and� do
not depend onk.

b1k2 is negative for small values ofk. If k exceeds the valuekmax = 1
�
(π2 − φ), then

b1k2 becomes positive and, thus, all phases withk > kmax are unstable at the considered
point of the phase diagram. Sincekmax −→ ∞ for T −→ 0, there is, for everyk, a
temperature below which the phase〈1k2〉 is stable. Thus, all phases〈1k2〉 spring from the
multiphase point, but the higher commensurate phases disappear at non-zero temperatures
Tk, which decrease with increasingk. Such a cut-off of the high commensurate phases at
finite temperatures is also observed in the ANNNI model [15].

Following the general line we also examined the series of phases〈12k12k+1〉 and
〈1k21k−12〉. For the case〈12k12k+1〉 we find that all these phases are stable at finite
temperatures in the vicinity of the multiphase point with no cut-off for the phases with
a large value ofk, i.e. the results for the series〈12k12k+1〉 resemble the results for the series
〈12k〉. Analysing the leading contribution for the phases〈1k21k−12〉 we find a behaviour
similar to the behaviour of the phases〈1k2〉, i.e. all phases withk < kmax (the value ofkmax

being series dependent) are stable andkmax−→∞ asT −→ 0.
It should be emphasized that the low-temperature expansion yields a convergent power

series only ifx � wq⊥ . For the CC3 model [16] an analysis in Bethe approximation
showed no cut-off of the low-commensurate phases〈1k2〉 with k 6 10 for the caseJ0 = J ,
in contrast to the corresponding low-temperature expansion [7]. In fact, for these low-
commensurate phases the cut-off temperature is of the order ofJ . Results of the series
expansion for such high temperatures are only reliable ifq⊥J0� J is assumed. Therefore,
the results of the expansion in [7] do not contain the caseJ0 = J considered in [16].

3.3.2. Phases containing general sequences of 1- and 2-layer bands.In the following we
will show that all phases consisting only of 1- and 2-layer bands and obeying the rules
of the structure combination spring from the multiphase point, the higher commensurate
phases of some series becoming unstable at higher temperatures. The leading contribution
to aν for all these phases is of the form (see table 1)

bν = −(aTc − aTf )DC(bf − bc) (18)
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where D is a product of powers of matricesC and (CF). The contributions of the first
and last band are given by(aTc − aTf ) andC(bf − bc) respectively. A 1-layer band in the
core contributes a matrixC, whereas a 2-layer band yields the matrix product(CF). The
product over all bands in the core yields the matrixD (see equation (18)).

The diagonal elements of the matrix

CF =
(

2(1− y)(1− x) x(1− y)2− x−1y(1− x)2
y(1− x)2− xy−1(1− y)2 (1+ xy)(1− y)(1− x)

)
w2q⊥ (19)

are positive whereas the non-diagonal elements are negative, sincey = x1+δ with x � 1.
We now follow [14] and introduce the unitary matrix

U =
(−1 0

0 1

)
= U−1.

All elements ofU(CF)U, and therefore ofU(CF)kU, are positive. This is also the case for
the two vectors(aTc − aTf )U andUC(bf − bc), thus (see equation (15) and table 1)

(aTc − aTf )(CF)k−1C(bf − bc) = (aTc − aTf )UU(CF)k−1UUC(bf − bc)
is positive, i.e.b12k < 0, in agreement with the aforementioned calculations.

Phases of the series〈12k12k+1〉 contain a single 1-layer-band in the core yielding the
matrix product(CF)C(CF) with positive diagonal and negative non-diagonal elements for
small x. Hence, the product (see table 1)

(aTc − aTf )(CF)kC(CF)kC(bf − bc)
= (aTc − aTf )UU(CF)k−1UU(CF)C(CF)UU(CF)k−1UUC(bf − bc)

is positive, showing the stability of the phases〈12k12k+1〉. Following this line of thought
one easily shows that all phases appearing between the phases〈2〉 and〈12〉 (i.e. phases with
only isolated 1-layer-bands in the core) are stable in the vicinity of the multiphase point.
Indeed, as no new matrix products show up in the computation of the differentbν , all these
expressions can be written, using the matrixU, as a product of vectors and matrices having
only positive elements.

For phases containing consecutive 1-layer-bands in the core the following additional
vectors and matrices may contribute to thebν as can be seen from table 1:UCk(bf − bc),
(aTc − aTf )CkU, andU(CF)CkU with k > 2. Introducing the eigenvalues of the matrixC
(see equation (17)), we obtain

v1 = exp(−k00)[x
δ
2 (1− x) cosk�+ x− 1+δ

2 (1− x1+δ) sink�]wkq⊥

v2 = exp(−k00)[x
− δ

2 (1− x1+δ) cosk�− x1+δ(1− x) sink�]wkq⊥

for the components of the vectorv = UCk(bf −bc). Whereasv1 is always positive,v2 > 0
only if the inequality

tank� <
x−

δ
2 (1− x1+δ)
x1+δ(1− x)

holds. This is the case for temperatures smaller than an upper limit which depends onδ

and k. In a similar way one shows that for temperatures smaller than somek-dependent
temperature all the components of the vector(aTc −aTf )CkU and of the matrixU(CF)CkU are
positive. The free energy differencesaν for all phases containing consecutive 1-layer-bands
in the core are therefore negative below a certain temperature, i.e. these phases possess a
stability region below this temperature.
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3.3.3. Conclusion. The results obtained so far can be summarized as follows. All phases
consisting only of 1- and 2-layer-bands, that can be formed by means of the aforementioned
structure combination rules, spring from the multiphase point, where they are degenerate.
The higher commensurate phases of some series, i.e. those phases formed in higher orders
of the combination process, disappear again at temperatures individually depending on the
series under consideration.

From these results the complete low-temperature phase diagram of the CC4 model is
deduced by applying the transformation (7). At non-zero temperatures all phases appearing
between the phases〈12〉 and 〈3〉 are stable since the transformation (7) transforms phase
〈12〉 into 〈3〉 and leaves the phase〈2〉 invariant. Some of the long commensurate phases
appearing between the phases〈1〉 and〈12〉 for 1 > 1

2 and between the phases〈∞〉 and〈3〉
for 1 < 1

2 are unstable at a given temperature. Upon reducing the temperature, increasingly
more of these phases become stable, and in the limitT −→ 0 all phases obeying the rules of
the structure combination are stable. Therefore, the CC4 model exhibits a complete devil’s
staircase in the low-temperature limit.

3.4. Comparison with other work

The low-temperature behaviour of the generalp-state chiral clock model was analysed in [2]
using a series expansion technique similar to the one presented here. Due to the incorrect
expansion (see section 2) only some specific families of phases were shown to possess
a finite stability region at small temperatures. Particularly, it was claimed that the phases
〈1k2〉 with k > 2 are not stable at low temperatures, implying that, due to transformation (7),
for 1 < 1

2 a direct transition from the ferromagnetic phase to the〈4〉-phase exists. In order
to corroborate these calculations a low-temperature mean-field analyses of the CCp model
was presented in [5] were it was claimed that in the vicinity of the multiphase point the
mean-field approximation yields the same stable phases as [2]. In that work the model in
mean-field approximation was mapped onto an one-dimensional array of interacting domain
walls. This mapping was derived under the approximation that the mean-field average spin
(〈cosπ2ni,α〉MF, 〈sin π

2ni,α〉MF) in each layer (layer spin) does only deviate from theT = 0
value in amplitude but not in phase. In a detailed analyses of the mean-field phase diagram
of the CC3 model, Siegert and Everts [17] showed that this approximation leads to a wrong
phase diagram at low temperatures, thus concluding that the layer spin must also be allowed
to deviate in phase from its ground-state value. This should not only be the case for the
three-state but also for the generalp-state model. The results of [5] for the mean-field
low-temperature behaviour of the CCp model must therefore be considered with care.

In the preceding sections we have shown that the results of the series expansion in [2]
are erroneous due to wrong Boltzmann factors for the in-layer bonds. In fact, the four-state
model exhibits in the low-temperature limit a complete devil’s staircase. Furthermore, it
results from our calculations that no direct transition from the ferromagnetic to the〈4〉-phase
exists as phases with longer periods are stable between these two phases.

In the Monte Carlo simulation of the CC4 model [8] long-period spin patterns were
observed when going from the ferromagnetic phase to the modulated phases at rather
high temperatures. In view of this work one must interpret these patterns as reflecting
the existence of phases springing from the multiphase point and intercalating between the
ferromagnetic and the〈4〉-phases.
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4. The critical behaviour

The critical behaviour of the generalp-state chiral clock model at the transition to the
paraphase is an interesting topic since forp = 2 the chiral clock model reduces to the
anisotropic Ising model, forp = ∞ it corresponds to the classical three-dimensionalXY -
model. Siegert and Everts [18] showed that the CC3 model belongs to the universality
class of the three-dimensionalXY -model. On the basis of his contradictory MFTM results,
McCullough [6] speculated about a change in the universality class from three-dimensional
Ising behaviour to three-dimensionalXY -behaviour forp close to 5. In the following we
will show that forp = 4 an effective Ginzburg–Landau–Wilson Hamiltonian can be derived
which can be transformed to the effective Hamiltonian of the three-dimensionalXY -model.

For the casep = 4 the Hamiltonian (1) can be rewritten in the form

H = −J
∑
i

∑
α

Si,αR(1)Si,α+1− J0

∑
α

∑
〈ij〉
Si,αSj,α

where we introduced the spin vectorSi,α = (cosπ2ni,α, sin π
2ni,α) and the rotation matrix

R(1) =
(

cosπ21 sin π
21− sin π

21 cosπ21

)
.

Rotating all spins in layerα by the angleπ2α1, i.e. introducing new vectorsσi,α =
R(α1)Si,α, leads to the expression

Z =
∑
{σ}

exp

[
− 1

2

∑
ij

∑
αβ

2∑
κ=1

σκi,αKiα,jβσ
κ
j,β

]
(20)

for the partition function,κ labelling the two spin components. The elementsKiα,jβ of the
coupling matrix are zero unless the lattice sites(i, α) and(j, β) are nearest neighbours.

Expression (20) may be transformed [19, 20] into

Z = C
∑
{σ}

( 2∏
ρ=1

∏
kγ

∫
dhρk,γ

)
exp

[
− 1

2

∑
ij

∑
αβ

∑
κ

hκi,αL
−1
iα,jβh

κ
j,β +

∑
i

∑
α

∑
κ

hκi,ασ
κ
i,α

]
.

HereC is a numerical constant,N is the total number of lattice sites andI is theN × N
identity matrix. The matrixL is given by L = µI − K where the positive numberµ is
chosen large enough to ensure that all the eigenvalues ofL are positive.

The sum over all states can be easily computed:∑
{σ}

exp

(∑
i

∑
α

∑
κ

hκi,ασ
κ
i,α

)
= 2N

∏
iα

[cosh(h1
i,αcα − h2

i,αsα)+ cosh(h1
i,αsα + h2

i,αcα)]

(21)

with cα = cos( π2α1) andsα = sin( π2α1). Using the expansion

ln coshx = −
∑
n

(−1)n
22n−1(22n − 1)Bn

n(2n)!
x2n

(Bn: Bernoulli number) the expression on the right-hand side of (21) can be written as the
exponential of a sum of powers ofh1

i,α andh2
i,α:

C1 exp

[∑
n

2n∑
k=0

k∑
l=0

2n−k∑
l′=0

c(n, k, l, l′)
∑
i

∑
α

cl+l
′

α s2n−l−l′
α (h1

i,α)
k(h2

i,α)
2n−k

]
(22)

wherec(n, k, l, l′) is a number depending onn, k, l and l′.
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Introducing new variablesφκi,α = L−1
iα,jβh

κ
j,β , taking the continuum limit and turning to

the wavenumber representation leads to the partition function

Z ∝
(∏

q

∫
dτ q

)
exp[−H̄ ]

with the effective Hamiltonian

H̄ = −1

2

∫
BZ

d3q

(2π)3

(
r + q2

⊥ +
ϒ

ϒ0
q2
‖

)
[τ (q)τ (−q)]

−u
∫

BZ

d3q d3q ′ d3q ′′

(2π)9
[τ (q)τ (q′)][τ (q′′)τ (−q − q′ − q′′)] (23)

with

τ q = (τ 1
q , τ

2
q ) and φκ(r) =

∫
BZ

d3q

(2π)3
exp(iq · r)τ κq .

The integration is over the first Brillouin zone withq = (q⊥, q‖), its componentsq⊥
and q‖ being perpendicular and parallel to the direction of the modulation respectively.
r = 1

ϒ0
(1− 2ϒ0−ϒ) with ϒ = J

kBT
andϒ0 = J0

kBT
varies linearly with temperature.

In deriving equation (23) we neglected fourth and higher harmonics, i.e. fast oscillating
terms containing exp(inπ2α1) with n > 4. Furthermore we did not include terms of higher
than fourth order inτ . If we rescaleq‖ in the effective Hamiltonian [21] we end with the
effective Ginzburg–Landau–Wilson Hamiltonian of the three-dimensionalXY -model.

5. Conclusions

A low-temperature series expansion technique is suitable to obtain exact results on the low-
temperature behaviour of the CC4 model. All phases degenerate at the multiphase point
(T = 0,1 = 1

2) and obeying the structure combination rules spring from the multiphase
point. Some of these phases disappear at higher temperatures. In the low-temperature limit
the CC4 model exhibits a complete devil’s staircase. Differences in the low-temperature
phase diagrams derived in the present and in a previous publication can be traced back to
an inconsistency in the series expansion of the latter. Long-period spin patterns derived in
this paper as stable phases between the ferromagnetic and the〈4〉-phase and not occurring
in the analyses presented in [2], were recently seen in Monte Carlo simulations just above
the boundary of the ferromagnetic phase.

Furthermore, the critical behaviour at the boundary between the paraphase and the
modulated structures follows from the derivation of an effective Ginzburg–Landau–Wilson
Hamiltonian. It is shown that the latter can be transformed into the effective Hamiltonian
of the three-dimensionalXY -model. The four-state model thus belongs to the universality
class of theXY -model.
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